00001 /* Part of the culibs project, <http://www.eideticdew.org/culibs/>. 00002 * Copyright (C) 2006--2007 Petter Urkedal <urkedal@nbi.dk> 00003 * 00004 * This program is free software: you can redistribute it and/or modify 00005 * it under the terms of the GNU General Public License as published by 00006 * the Free Software Foundation, either version 3 of the License, or 00007 * (at your option) any later version. 00008 * 00009 * This program is distributed in the hope that it will be useful, 00010 * but WITHOUT ANY WARRANTY; without even the implied warranty of 00011 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 00012 * GNU General Public License for more details. 00013 * 00014 * You should have received a copy of the GNU General Public License 00015 * along with this program. If not, see <http://www.gnu.org/licenses/>. 00016 */ 00017 00018 #ifndef CUEX_RECURSION_H 00019 #define CUEX_RECURSION_H 00020 00021 #include <cuex/fwd.h> 00022 #include <cuex/var.h> 00023 #include <cuex/binding.h> 00024 00025 CU_BEGIN_DECLARATIONS 00026 /** \defgroup cuex_recursion_h cuex/recursion.h: Functions on the Recursive Structure of Expressions 00027 ** @{ \ingroup cuex_mod */ 00028 00029 /** Unfold the μ-expression at the top-level of \a e. That is, assuming \a e = 00030 ** \e μx \e e′, returns \e e′[x ↦ \e μx \e e′]. 00031 ** \pre \e must have a top-level μ-bind. */ 00032 cuex_t cuex_mu_unfold(cuex_t e); 00033 00034 /** Minimise \a e by μ-folding it as much as possible. This is done using a 00035 ** modified version of Hopcroft's algorithm for minimising a finite 00036 ** automaton. */ 00037 cuex_t cuex_optimal_fold(cuex_t e); 00038 00039 /** @} */ 00040 CU_END_DECLARATIONS 00041 00042 #endif